发展历程
变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。
20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。1968年以丹佛斯为代表的高技术企业开始批量化生产变频器,开启了变频器工业化的新时代。
20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。
20世纪80年代中后期,美、日、德、英等发达国家的VVVF变频器技术实用化,商品投入市场,得到了广泛应用。早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,高端产品迅速抢占市场。
步入21世纪后,国产变频器逐步崛起,现已逐渐抢占高端市场。上海和深圳成为国产变频器发展的前沿阵地。
电压故障解决方法
1. 检查输入电压
2. 延长减速时间
3. 延长减速时间或使用制动装置
4. 等待电机停转后再起动
5. 更改操作顺序
6. 根据负载重新选择制动电阻
拆下变频器的模块后,用数字表的二极管挡测量模块内所有二极管的正反向电压,均显示正常,但P-V接线端间的阻值大于l00kΩ。用晶体管直流参数测试仪测试发现V相上管反向耐压仅为0.5V左右,再用数字表kΩ,由此判断变频器的模块已坏。
检查发现,变频器的氧化地方在b段。上电测量各个IGBT的G、E极间电压均在0.6V左右。
对新购回的模块进行“常规四项”测量,正常后装入电路,上电测量静态电压无异常,启动丹佛斯变频器试机,还没来得及测量完各相输出电压是否平衡,又显示故障代码“Err14”。停机后,测得三相输出端与电源正负端的电压均正常,难道是检测电路有误?随后多次试机发现:该变频器有时上电就出现此故障,有时上电后不久才出现故障,有时要启动后才出现故障。
由于丹佛斯VLT2800系列机器中没有输出端电流传感装置,所以其过流、短路、接地等故障均是驱动电路异常,或是IGBT导通压降检测部分异常所致,即上述二部分电路中尚有不稳定的隐蔽故障存在。
根据以往的经验,首先怀疑驱动部分有问题。此时具有示波功能的ET521A视波表就派上用场了。
使用示波功能中的单次扫描功能反复检测,后在V相上管IGBT的G-E结间检测出尖峰脉冲,上电即报故障时所测波形如上图所示,上电一段时间后才报故障时的波形如下图所示。
经多次测试后发现问题竟然是b段氧化铜箔处理的不够彻底,即氧化的边缘部分仍有较大的导通电阻。幸好此部分没有完全在模块下面,从模块的镙丝安装部位缺口处将原来的细铜丝拆除,用更长的一段细铜丝(长度约为原铜丝的2倍),焊接在原氧化铜箔上。检查无误后反复上电试机,一切正常,带上负载后试机也正常。
变频器在接入鼓风机之前,电工决定先通电空载测试一下、谁知通电没多长时间,就发现冒烟,立刻关掉电闸。将变频器打开后,发现主电路限流电阻很烫。该电工不以为然,在开盖情况下又通电观察一次。这一试,电阻倒是不冒烟了,但不一会儿,变频器便因“欠压”而跳问了。用万用表量,该电阻已经烧坏。
变频器容量的确定
合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三种:
1)电机实际功率确定发。首先测定电机的实际功率,以此来选用变频器的容量。
2)公式法。当一台变频器用于多台电机时,应满足:至少要考虑一台电动机启动电流的影响,以避免变频器过流跳闸。
电机额定电流法变频器。变频器容量选定过程,实际上是一个变频器与电机的匹配过程,常见、也较的是使变频器的容量大于或等于电机的额定功率,但实际匹配中要考虑电机的实际功率与额定功率相差多少,通常都是设备所选能力偏大,而实际需要的能力小,因此按电机的实际功率选择变频器是合理的,避免选用的变频器过大,使投资增大。对于轻负载类,变频器电流一般应按1.1N(N为电动机额定电流)来选择,或按厂家在产品中标明的与变频器的输出功率额定值相配套的电机功率来选择